Acute and chronic inflammation.
Acute and chronic inflammation.

I. Microspecimens:

Indications:
1. Fibrin deposits on the surface of the epicardium.
2. Leukocytic infiltration of epicardium.
3. Myocardium.

On the surface of the epicardium, there are fibrin deposits of eosinophilic color, with irregular appearance, rough due to contractile movements of the heart. In the underlying tissue hyperemia of the vessels, edema, inflammatory infiltrate with neutrophilic leukocytes, lymphocytes and macrophages can be seen. Macroscopically, the heart becomes hairy - villous heart (see macrospecimen number 11).

Fibrinous inflammation occurs in the case of severe tissue injury, leading to marked increase of vascular permeability, which favors extravasation of fibrinogen. The extravasated fibrinogen coagulates into fibrin under the action of thromboplastin, which is removed following tissue necrosis. Fibrin is the predominant component of the exudate. It is most commonly found on mucous and serous membranes, but also in parenchymal organs, eg in the lungs, kidneys. The consequences of fibrinous inflammation can be varied: in some cases complete resorption of the exudate due to the fibrinolytic action of leukocyte enzymes, in other cases fibrin does not resorbed, its organization occurs with the appearance of scars on mucous membranes or adhesions between serous sheets with partial or total obliteration of the cavities (pericardial, pleural, peritoneal) and functional disorders of the respective organs.
28. **Pyogenic leptomeningitis.** *(H-E. stain).*

Indications:
1. Neutrophilic infiltration of leptomeninges.
2. Pus (neutrophils) in the subarachnoid space.
3. Edematous brain tissue.

In microspecimen, with naked eye, thickened leptomeninges of intense basophilic color, and brain tissue of eosinophilic color are observed. At the small magnification, leptomeninges is diffuse infiltrated by neutrophilic leukocytes with presence of edema, dilated blood vessels, hyperemia and leukocytic agglomerations in subarachnoid space. In cerebral tissue there are perivascular and pericellular edema (colorless spaces around vessels and cells), dilation and hyperemia of blood vessels, punctiform hemorrhages and focal infiltrates with neutrophilic leukocytes.

Pyogenic leptomeningitis is an example of phlegmonous purulent inflammation - inflammation without precise delimitation, in which the exudate is diffusely spread between the tissue elements. The pus spreads along the intermuscular spaces, adipose tissue, neuro-vascular trunks, etc. In addition to leptomeninges, it is encountered in adipose tissue, muscles, walls of cavitary and tubular organs (vermicular appendix, gallbladder, stomach, intestine). The most common causative factor of pyogenic leptomeningitis is meningococcus. As a result, resorption of the exudate and complete resolution may develop, or thickening of the meningeal membranes may occur and adhesions between the membranes and between them and brain surface, which favors the appearance of cystic cavities in the thickness of the leptomeninges or even of the internal hydrocephalus caused by the stenosis or obstruction of the Magendie and Luschka holes.
12. Interstitial myocarditis. (H-E. stain).

Indications:
1. Infiltration with inflammatory cell of the myocardial stroma.
2. Muscle fibers.

In the interstitial tissue of the myocardium, cellular agglomerations are observed, consisting of lymphocytes, monocytes, macrophages, plasmocytes, fibroblasts. Cellular infiltration is more pronounced around the vessels (perivascular), especially in the subendocardial and subepicardial zones. Degenerative lesions occur in cardiomyocyte sarcoplasm.

It is encountered in viral infections (measles, rubella, influenza), bacterial infection (scarlet fever, exanthematic typhus, meningococcal infection, typhoid fever, brucellosis, septicemia, etc.), fungal and parasitic infections. Clinically it can manifest by signs of heart failure and rhythm disorders. As a consequence of interstitial myocarditis, complete restoration of myocardium or development of cardiosclerosis may occur. Interstitial inflammation is a variant of chronic proliferative inflammation, in which the inflammatory process is localized in the stroma (interstitium) of parenchymal organs. Most common localization: myocardium, kidneys, lungs, liver (name - interstitial - myocarditis, nephritis, pneumonia, hepatitis). The morphological substrate of proliferative inflammation is the inflammatory cell infiltrate.

Consequences of proliferative inflammation: fibrosis - proliferation of connective tissue without organ induration, sclerosis - proliferation of connective tissue, leading to diffuse or local induration of parenchymal organs and cirrhosis - proliferation of connective tissue with pronounced deformation of organs.
№ 82. Renal milliary tuberculosis. (*H*-E. stain). **Indications:**
1. Tuberculous granuloma:
 a. focus of caseous necrosis in the center of granuloma;
 b. layer of epithelioid cells;
 c. giant cells Langhans;
 d. layer of lymphoid cells.
2. Adjacent renal tissue.

In the renal tissue, tuberculous granulomas are observed that have in the center a zone of eosinophilic, amorphous, structured caseous necrosis without nuclei, surrounded by a crown of cells arranged from the center to the periphery in the following order: immediately around the necrosis are epithelioid cells, with elongate, pale nuclei, radially disposed (resembling the cells of the spinous layer of the epidermis, hence the name), which are macrophages of monocyte origin, between them, Langhans giant cells can be seen with eosinophilic cytoplasm and nuclei placed as horseshoe or crown. Langhans cells are typical for tuberculosis, in their cytoplasm, Koch bacilli are found. At the periphery of the granuloma is a belt of lymphoid cells (small lymphocytes), including macrophages and plasmocytes. The lack of blood capillaries in the tuberculous granuloma and the persistence of reticulin fibers is characteristic.

Tuberculous nodules can have different sizes, ranging from the size of a millet grain in miliary tuberculosis to larger formations than a few cm. in diameter. The consequences may be different: in cases of favorable evolution (tuberculostatic treatment, high resistance of the organism) resorption, organization, encapsulation or petrification and ossification of the lesion foci may occur, and the unfavorable evolution may be manifested by secondary caseous necrosis and granuloma softening. Miliary tuberculosis of the kidneys is found in cases of hematogenous dissemination of primary or secondary tuberculosis.
No 82. Renal milliary tuberculosis. (H-E. stain).
II. Macrospecimens:

№ 11. Fibrinous pericarditis.

The epicardium is opaque, the surface is irregular, covered with yellowish-white deposits of fibrin in the form of villi, which appear due to the contractile movements of the heart. The heart gets a hairy or "tongue of a cat" appearance (villous heart). Fibrin deposits are flaccid and detach slightly (croupous inflammation).

Fibrinous pericarditis is encountered in rheumatic fever, tuberculosis, transmural myocardial infarction, uremia, etc. At auscultation it is manifested by pericardial friction noise. Consequences: resorption of fibrinous exudate due to the fibrinolytic action of leukocyte enzymes or its organization with formation of adhesions between pericardial leaves and obliteration of the pericardial sac. Over time, calcium salts are deposited in the sclerosed pericardium and the "heart in cuirass" appears, which is clinically manifested by progressive chronic heart failure.
№ 11. Fibrinous pericarditis.
33. **Lobar pneumonia (grey hepatization stage).**

The affected lobe is enlarged in size, not aerated, of firm consistency (similar to the consistency of the liver), the section has a granular appearance, gray color due to the deposit in the alveoli of the fibrinous exudate with a rich content of neutrophilic leukocytes and macrophages; fine deposits of fibrin (parapneumonic fibrinous pleurisy) are observed on the pleura.

The gray hepatization occurs over 4-5 days after the onset of the disease. Subsequently, in the uncomplicated cases, in 8-9 days the lysis of the exudate begins by the fibrinolytic action of leukocytes and macrophages and its elimination by lymphatic drainage and expectoration. Finally, the affected lung is cleansed and the ventilation is restored, which may take 1-3 weeks. Pleural fibrinous exudate is resorbed or organized with the formation of fibrous adhesions between the pleural sheets. In about 3% of cases, alveolar exudate does not liquefy and is replaced by granulation tissue, which is transformed into mature connective tissue (organization) - post-pneumonic fibrosis. Other possible pulmonary complications are pulmonary abscess and pleural empyema. Extrapulmonary complications: purulent pericarditis, mediastinitis, bacterial endocarditis, hematogenous dissemination of infection with development of otitis media, meningitis, brain abscess, purulent arthritis. Complications usually develop in patients with low immunity.
№ 33. Lobar pneumonia (grey hepatization stage).
34. Fibrinous pleuritis.

Visceral sheet of the pleura is covered with a fine membrane of whitish fibrin, partially attached to the pleura which gives it a rough appearance. Fibrinous pleuritis manifests at auscultation through pleural friction noise.

It is encountered in tuberculosis, pneumonia, infarction and abscess of lungs, uremia, rheumatoid arthritis, systemic lupus erythematosus. Consequences: resorption of the exudate or fibrous organization with the appearance of adhesions between the pleural sheets with partial or total obliteration of the cavity. The formation of adhesions in the pleura reduces the amplitude of the respiratory movements of the lungs.

152. Fibrinous peritonitis.

In macrospecimen is a segment of small intestine, the serous membrane has opaque appearance, rough surface, the intestinal loops adhere tightly to each other.

Fibrinous peritonitis can be localized or generalized. It is encountered in appendicitis, cholecystitis, acute pancreatitis, gastric ulcer with perforation, intestinal gangrene, tuberculosis, uremia. Consequences: resorption of fibrinous exudate or its organization with the installation of an adhesive process in the abdominal cavity, which can be complicated by intestinal occlusion.
№ 34. Fibrinous pleuritis.
№ 152. Fibrinous peritonitis.
№ 32. Focal pneumonia with abscess formation.

On the section of the lung, there are multiple spread, non-aerated foci of pneumonia which have whitish-gray color and 2-3 cm in diameter, slightly raised, separated by intact lung tissue. In some of these foci there are irregularly shaped cavities, ranging in size from 0.5 to 1-1.5 cm, filled with pus or without content - abscesses. On pleura, fibrin deposits may be seen in case of subpleural localization of pneumonia.

Abscess appears as a result of necrosis, destruction and lysis of the necrotic tissue. The necrosis is due both to the direct injurious action on the tissues of the toxins of the pyogenic bacteria, as well as to the circulatory disorders related to the thrombosis of the vessels and their compression by the inflammatory edema. Histolysis (proteolysis) is produced by proteolytic enzymes eliminated by neutrophil leukocytes. Following the lysis of the altered and necrotic tissues, a viscous, semi-liquid mass of yellow color appears - pus.

Abscess is one of the pulmonary complications of pneumonia, primarily bronchopneumonia or focal pneumonia. Bronchopneumonia is the most common form of pneumonia, which begins with the initial inflammation of the bronchi and bronchioles with subsequent expansion into the adjacent alveoli (bronchoalveolitis). Bronchopneumonia with abscess formation is usually caused by staphylococci and streptococci. It is most commonly seen in patients with different concomitant conditions, eg congestive heart failure, chronic lung disease, diabetes, immunodeficiency, especially in the elderly. Consequences of acute pulmonary abscess: organization, calcification, chronic evolution (chronic abscess).
№ 32. Focal pneumonia with abscess formation.
№ 12. Diffuse cardiosclerosis.

On myocardial section of the left ventricular wall, multiple thin bands of whitish fibrous conjunctive tissue are observed.

Diffuse cardiosclerosis is a process of diffuse excessive proliferation of connective tissue in the heart wall. It may be a consequence of interstitial myocarditis, eg, in rheumatic fever, diphtheria, influenza, measles, sepsis. It is also encountered in chronic ischemic heart disease, caused by stenosing atherosclerosis of coronary arteries. Possible complications: congestive heart failure, heart and rhythm disorders.

№ 21. Echinococcosis of the heart.

In the walls of the heart, there are multiple round cystic cavities, with variable dimensions, limited by a opaque, whitish membrane - chitinous membrane, the adjacent myocardium is atrophied and sclerosed, forming a fibrous capsule.

Echinococcosis or hydatid disease is a helminthiasis caused by Echinococcus granulosus or Echinococcus multilocularis, which is characterized by the formation of cysts in different organs. Human infection occurs via food, the main source of infection being dogs. Primarily, in most cases the liver is affected, less often other organs. From the primary focus the echinococcus can spread hematogenously, affecting the lungs, brain, kidneys, heart. Due to the tendency of hematogenous and lymphogenic spread, echinococcosis is clinically manifested as a malignant tumor. Echinococcal cysts eliminate toxic substances, which cause peripheral proliferative inflammation with inflammatory cell infiltrate, consisting of lymphocytes, macrophages, eosinophils, giant polynuclear cells of foreign bodies, fibroblasts. Following proliferative inflammation around the cyst, a fibrous capsule is formed, sometimes with calcinosis, the adjacent tissue is atrophied.
№ 12. Diffuse cardiosclerosis.
№ 21. Echinococcosis of the heart.
Clinical signs of inflammation
rubor (redness), calor (increased heat), tumor (swelling), dolor (pain), and functio laesa (loss of function)
Epidermal vesicle with serous exudate.
Serous focal pneumonia.
Fibrinous inflammation.
Focal pneumonia.
Purulent pleurisy (pleural empyema).
Purulent leptomeningitis.
Acute phlegmonous appendicitis.

Norm

Purulent peritonitis (complication).
Fig.IV.A.5 Abces hepatic, col. H.E., Ob. 4
1. Detritus necrotic si PMN-uri; 2. Capsula piogena; 3. Parenchim hepatic;
Granulomatous inflammation of the endocardium and myocardium in rheumatic fever. (*H-E* stain).
Tuberculous granulomas with giant cells Langhans.
Syphilitic gumma

Liver.
Gastric polyposis.

Endometrial polyp.
• “Inflame” – to set fire.
• Inflammation is “dynamic response of vascularised tissue to injury.”
• Is a protective response.
• Serves to bring defense & healing mechanisms to the site of injury.
Acute inflammatory reactions are triggered by a variety of stimuli:
• Infections (bacterial, viral, parasitic) and microbial toxins
• Trauma (blunt and penetrating)
• Physical and chemical agents (thermal injury, e.g., burns or frostbite; irradiation; some environmental chemicals)
• Tissue necrosis (from any cause)
• Foreign bodies (splinters, dirt, sutures)
• Immune reactions (also called hypersensitivity reactions)
The nomenclature used to describe inflammation in different tissues employs the tissue name and the suffix “-itis”

e.g
pancreatitis
meningitis
pericarditis
arthritis
Inflammation

• provoked response to tissue injury
 • chemical agents
 • cold, heat
 • trauma
 • invasion of microbes

• serves to destroy, dilute or wall off the injurious agent

• induces repair

• protective response

• can be potentially harmful
Lewis Triple Response:

- **Flush**: capillary dilatation.
- **Flare**: arteriolar dilatation.
- **Weal**: exudation, edema.
Red, Warm & Swollen

(Flare, Flush & Weal – Lewis)

Triple response
Gastric Ulcer:
Laryngitis:
Mouth Aphthous ulcer
Acute Enteritis:
Pneumonia
Cardinal Signs of Inflammation

Celsius, a Roman writer of the first century AD, first listed the four cardinal signs of inflammation:

- *Rubor* (Redness)
- *Calor* (Warmth)
- *Tumor* (Swelling)
- *Dolor* (Pain)
- *Functio laesa* (Loss of function, later added by Virchow)
Acute Inflammation

Acute Inflammatory Response

Clinical indications
- Generalize malaise
- Fever
- Pain often localized to the inflamed area
- Rapid pulse rate

Lab values
- Raised neutrophil count in peripheral blood
- Increased erythrocyte sedimentation rate
- Increased acute phase proteins in the blood
 - Increase greatly in acute inflammation
 - Induced by IL-1 and produced by the liver
 - C-reactive protein (liver) is the most common
 - *Used to monitor patients with acute myocardial infarction*

(c) 2007, Michael A. Kahn, DDS
Acute Inflammation

PATHOGENESIS: Three main processes occur at the site of inflammation, due to the release of chemical mediators:

1. Increased blood flow (redness and warmth)

2. Increased vascular permeability (swelling, pain & loss of function)

3. Leukocytic Infiltration
The inflammatory response consists of a vascular and a cellular reaction.
Acute inflammation involves:

alteration of vascular caliber following very brief vasoconstriction (seconds), vasodilation leads to increased blood flow and blood pooling creating redness and warmth (rubor and calor)

changes of microvasculature increased permeability for plasma proteins and cells creating swelling (tumor). Fluid loss leads to concentration of red blood cells and slowed blood flow (stasis)

emigration of leukocytes from microcirculation due to stasis and activation leads migration towards offending agent
Mechanism of Inflammation:
Vascular changes and fluid leakage during acute inflammation lead to **Edema in a process called Exudation**

Transudate
- result of hydrostatic or osmotic imbalance
- ultrafiltrate of plasma
- Low protein content
- specific gravity < 1.015

Exudate
- result of inflammation
- vascular permeability ↑
- high protein content
- specific gravity >1.020
Increased vascular permeability and edema: a hallmark of acute inflammation

- Leakage is restricted to **venules of 20-60µm in diameter**
 - caused by endothelial gaps
 - usually an immediate and transient response (30 min.)

- Gaps occur due to contraction of e.g myosin and shortening of the individual endothelia cell

- Loss of protein from plasma leads to edema
 - due to reduced osmotic pressure in the vasculature
 - and increased osmotic pressure in the interstitium
• **Direct endothelial injury** causing necrotic cell death will result in leakage from all levels of microcirculation (venules, capillaries and arterioles)
 - This reaction is immediate and sustained

• **Delayed prolonged leakage** begins after 2-12 hours and can last several days due to thermal-, x-ray radiation or ultraviolet radiation (sunburn) and involves venules and capillaries

• **Leakage from new blood vessels** during tissue repair (angiogenesis) due to immature endothelial layer

All these described mechanisms may occur in one wound (e.g. burns) and can be life threatening
Neutrophil Margination
Acute inflammation

PATTERNS

• **Serous** (high fluid, low protein and cell content)
• **Catarrhal**
• **Fibrinous** (exudate is high in plasma proteins especially fibrin; seen in membrane-line body cavities)
• **Hemorrhagic** *(Purpura)*
• **Suppurative or purulent** (exudate is rich in neutrophils; abscess, phlegmon, empyeme)
• **Ulceration** *(necrotic and eroded epithelial surface underlying acute and chronic inflammation; trauma, toxins, vascular insufficiency)*
• **Gangrenous**
• **Pseudomembranous**
Catarrhal
Serous inflammation:
- outpouring of a thin fluid
- is derived from either the plasma or the secretions of mesothelial cells lining the peritoneal, pleural, and pericardial cavities (called effusion).
Different morphological patterns of acute inflammation can be found depending on the cause and extent of injury and site of inflammation.

- Serous inflammation
- Fibrinous inflammation
- Purulent inflammation
- Ulcers
Serous inflammation is marked by the outpouring of a thin fluid that, depending on the size of injury, is derived from either the plasma or the secretions of mesothelial cells lining the peritoneal, pleural, and pericardial cavities (called effusion).
A focus of inflammation showing numerous eosinophils
Fibrinous pericarditis
Deposits of fibrin on the pericardium.
Fibrinous pericarditis: A pink meshwork of fibrin exudate (F) overlies the pericardial surface (P).
SPECIFIC TYPES

Abscess

Furuncle
Carbuncle

Cellulitis

Lymphangitis
SPECIFIC TYPES

Parulis (gum boil; abscess on the gingiva) = localized accumulation of neutrophils
Purulent (Suppurative) inflammation
A, A subcutaneous bacterial abscess with collections of pus.
B, The abscess contains neutrophils, edema fluid, and cellular debris.
Vascular changes
A critical function of the vascular inflammatory response (stasis and vascular permeability) is to deliver leukocytes to the site of injury in order to clear injurious agents.

Neutrophils are commonly the first inflammatory cells (first 6-24 hours) recruited to a site of inflammation. Extravasation of leukocytes is a coordinated event of:

- margination
- rolling,
- adhesion,
- transmigration (diapedesis)
- migration.
The sequence of events in the journey of leukocytes from the vessel lumen to the interstitial tissue

1. In the lumen: margination, rolling, and adhesion to endothelium. Vascular endothelium normally does not bind circulating cells or impede their passage. In inflammation, the endothelium has to be activated to permit it to bind leukocytes, as a prelude to their exit from the blood vessels.

2. Transmigration across the endothelium (also called diapedesis)

3. Migration in interstitial tissues toward a chemotactic stimulus
Immune cells within a blood vessel
Immune cell traversing endothelium
Phagocytosis (engulf and destroy)

1. Recognition & attachment
 Opsonins (IgG and C3) coat target

2. Engulfment
 Pseudopods flow around the particle to be engulfed. Particle is engulfed and fuses with lysosome

3. Killing/degradation
 - O_2 dep: Reactive O_2 species in lysosomes
 - O_2 indep: Bactericidal permeability agents, lysozyme, MBP, lactoferrin
Phagocytosis of a particle (e.g., bacterium) involves attachment and binding of Fc and C3b to receptors on the leukocyte membrane, engulfment, and fusion of lysosomes with phagocytic vacuoles, followed by destruction of ingested particles within the phagolysosomes. Note that during phagocytosis, granule contents may be released into extracellular tissues.
Inflammation Outcome

Injury → Acute Inflammation → Resolution → Fibrosis/Scar → Chronic Inflammation

Abscess → Ulcer → Fistula → Sinus

Fungi
Viruses
Cancers
T.B. etc.
Outcomes of acute inflammation: resolution, healing by fibrosis, or chronic inflammation
Events in the resolution of inflammation: (1) return to normal vascular permeability; (2) drainage of edema fluid and proteins into lymphatics or (3) by pinocytosis into macrophages; (4) phagocytosis of apoptotic neutrophils and (5) phagocytosis of necrotic debris; and (6) disposal of macrophages. Macrophages also produce growth factors that initiate the subsequent process of repair.
“Never let the competition define you. Instead, you have to define yourself based on a point of view you care deeply about.”

– Tom Chappel
Chronic Inflammation
Chronic Inflammation
Although difficult to define precisely, chronic inflammation is considered to be inflammation of prolonged duration (weeks or months) in which active inflammation, tissue destruction, and attempts at repair are proceeding simultaneously. Although it may follow acute inflammation, chronic inflammation frequently begins insidiously, as a low-grade, smoldering, often asymptomatic response. This latter type of chronic inflammation is the cause of tissue damage in some of the most common and disabling human diseases, such as rheumatoid arthritis, atherosclerosis, tuberculosis, and chronic lung diseases.
In contrast to acute inflammation, which is manifested by vascular changes, edema, and predominantly neutrophilic infiltration, *chronic inflammation is characterized by*:

- *Infiltration with mononuclear cells*, which include macrophages, lymphocytes, and plasma cells.
- *Tissue destruction*, induced by the persistent offending agent or by the inflammatory cells.
- Attempts at *healing by connective tissue replacement of damaged tissue*, accomplished by proliferation of small blood vessels (*angiogenesis*) and, in particular, *fibrosis*
Table 5-1. Differences between Acute and Chronic Inflammation.

<table>
<thead>
<tr>
<th></th>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>Short (days)</td>
<td>Long (weeks to months)</td>
</tr>
<tr>
<td>Onset</td>
<td>Acute</td>
<td>Insidious</td>
</tr>
<tr>
<td>Specificity</td>
<td>Nonspecific</td>
<td>Specific (where immune response is activated)</td>
</tr>
<tr>
<td>Inflammatory cells</td>
<td>Neutrophils, macrophages</td>
<td>Lymphocytes, plasma cells, macrophages, fibroblasts</td>
</tr>
<tr>
<td>Vascular changes</td>
<td>Active vasodilation, increased permeability</td>
<td>New vessel formation (granulation tissue)</td>
</tr>
<tr>
<td>Fluid exudation and edema</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Cardinal clinical signs (redness, heat, swelling, pain)</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Tissue necrosis</td>
<td>– (Usually)</td>
<td>+ (ongoing)</td>
</tr>
<tr>
<td></td>
<td>+ (Suppurative and necrotizing inflammation)</td>
<td></td>
</tr>
<tr>
<td>Fibrosis (collagen deposition)</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Operative host responses</td>
<td>Plasma factors: complement, immunoglobulins, properdin, etc; neutrophils, nonimmune phagocytosis</td>
<td>Immune response, phagocytosis, repair</td>
</tr>
<tr>
<td>Systemic manifestations</td>
<td>Fever, often high</td>
<td>Low-grade fever, weight loss, anemia</td>
</tr>
<tr>
<td>Changes in peripheral blood</td>
<td>Neutrophil leukocytosis; lymphocytosis (in viral infections)</td>
<td>Frequently none; variable leukocyte changes, increased plasma immunoglobulin</td>
</tr>
</tbody>
</table>
Fish Tank Granuloma
Mycobacterium marinum
Chronic Inflammation:
Lung Abscess
A, Chronic inflammation in the lung, showing all three characteristic histologic features: (1) collection of chronic inflammatory cells, (2) destruction of parenchyma (alveoli are replaced by spaces lined by cuboidal epithelium, arrowheads), and (3) replacement by connective tissue (fibrosis, arrows).

B, By contrast, in acute inflammation of the lung (acute bronchopneumonia), neutrophils fill the alveolar spaces and blood vessels are congested.
Granuloma:
Giant cell (Langhans cells)